Weak Ω-categories from Intensional Type Theory
نویسنده
چکیده
We show that for any type in Martin-Löf Intensional Type Theory, the terms of that type and its higher identity types form a weak ω-category in the sense of Leinster. Precisely, we construct a contractible globular operad PMLId of definable “composition laws”, and give an action of this operad on the terms of any type and its identity types.
منابع مشابه
The Strict ω-Groupoid Interpretation of Type Theory
Hofmann and Streicher showed that there is a model of the intensional form of Martin-Löf’s type theory obtained by interpreting closed types as groupoids. We show that there is also a model when closed types are interpreted as strict ω-groupoids. The nonderivability of various truncation and uniqueness principles in intensional type theory is then an immediate consequence. In the process of con...
متن کاملQuotient types in type theory
Martin-Löf’s intuitionistic type theory (Type Theory) is a formal system that serves not only as a foundation of constructive mathematics but also as a dependently typed programming language. Dependent types are types that depend on values of other types. Type Theory is based on the Curry-Howard isomorphism which relates computer programs with mathematical proofs so that we can do computer-aide...
متن کاملA type-theoretical definition of weak ω-categories
We introduce a dependent type theory whose models are weak ω-categories, generalizing Brunerie’s definition of ω-groupoids. Our type theory is based on the definition of ω-categories given by Maltsiniotis, himself inspired by Grothendieck’s approach to the definition of ω-groupoids. In this setup, ω-categories are defined as presheaves preserving globular colimits over a certain category, calle...
متن کامل00 8 Types Are Weak Ω - Groupoids
We define a notion of weak ω-category internal to a model of Martin-Löf type theory, and prove that each type bears a canonical weak ω-category structure obtained from the tower of iterated identity types over that type. We show that the ω-categories arising in this way are in fact ω-groupoids.
متن کاملA Type-Theoretical Definition of Weak {\omega}-Categories
We introduce a dependent type theory whose models are weak ω-categories, generalizing Brunerie’s definition of ω-groupoids. Our type theory is based on the definition of ω-categories given by Maltsiniotis, himself inspired by Grothendieck’s approach to the definition of ω-groupoids. In this setup, ω-categories are defined as presheaves preserving globular colimits over a certain category, calle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008